View More View Less
  • 1 Karpov Institute of Physical Chemistry Obuha 10 103064 Moscow Russia
Restricted access

A thermodynamic analysis of the uniaxial stretching of polyurethanes of various compositions and mechanical histories was carried out by using deformation calorimetry. The initial small strain deformations were found to result from the volume elasticity of the hard phase. The intramolecular energy contributions of the soft blocks were estimated. The hard block contributions were shown to depend on their content and on the degree of sample stretching. The predominant role of the soft component is proved to be manifested only in softened samples with a hard block content not exceeding 30%. The thermodynamics of the softening and hysteresis phenomena were studied. The dependence of the deformation mechanism on the hard block content and mechanical history is discussed.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)