View More View Less
  • 1 National Research Council Canada Institute for Environmental Chemistry K1A OR6 Ottawa Ontario Canada
Restricted access


The thermal stability of a polypropylene copolymer has been examined at several stages during the processing of the material into its final product in order to obtain information on the influence of processing steps such as grinding and thermal heating on the expected lifetime of the material. Mass loss kinetics in an inert atmosphere were able to detect differences in thermal stability, but oxidative differential scanning calorimetry studies proved to be a more sensitive techiique. A comparative study of a specially prepared series of samples revealed the importance of additives on measured thermal stability and indicated that both mechanical and thermal processing can cause reduction in measured thermal stability.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)