Authors:
J. FlynnScientific Thermal Research and Data Analysis (STRDA) 5309 Iroquois Road 20816 Bethesda Maryland USA

Search for other papers by J. Flynn in
Current site
Google Scholar
PubMed
Close
and
Z. PetrovicUniversity of Massachusetts Department of Polymer Science and Engineering 01003 Amherst Massachusetts USA

Search for other papers by Z. Petrovic in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

Abstract  

Both oxidation and methoxymethylation of the surfaces of a series of MDI (methylene diphenyl isocyanate) and TDI (toluene diisocyanate) polyether and polyester soft segment 1–4 butanediol polyurethanes result in increased thermal stability as measured by TG. Explosive loss of mass above the hard segment melting temperature suggests that the diffusion of the dissociated diisocyanate moiety is hindered at lower temperatures. Thus suppression of the depolycondensation reaction by chemical blockage of the surface may result in a material with an increased service life at use temperatures as thermal stability of a polyurethane may depend upon the low diffusivity of its diisocyanate comonomer. The effect of vacuum, oxygen and water vapor on the kinetics of mass-loss of several of the polyurethanes is presented.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2022 0 0 0
Nov 2022 0 0 0
Dec 2022 0 0 0
Jan 2023 0 0 0
Feb 2023 0 0 0
Mar 2023 0 0 0
Apr 2023 0 0 0