View More View Less
  • 1 University of Sindh Institute of Chemistry Jamshoro, Sindh Pakistan
  • | 2 PCSIR Fuel Research Centre Karachi-39 Pakistan
Restricted access

Abstract  

Differential thermal analysis (DTA) of low-rank coals of high lignite to subbituminous rank from coal mines of Pakistan is reported. The studies carried out in dynamic oxygen atmosphere indicate that the exothermic reactions occur between 300 and 650°C and that the samples undergo stepwise oxidation of the organic matter rather than a continuous process as indicated by the pattern of shoulders from 250 to 350°C accompanying the main peak around 450°C. The effect of heating rate, particle size and volatile content was also studied in relation to oxidation. The results show that the increase in heating rate from 10 to 80 deg min−1 results in a marked shift in all the events in the DTA curve towards higher temperatures. As for the effect of particle size, the DTA records of 100–75, 150–100, 250–150 μm and greater than 250 μm fractions show that the magnitude and position of shoulder peaks are more sensitive to changes in particle sizes compared to the main peak. The curves recorded to study the effect of changing volatile content of samples between 30–40% indicate a complex pattern of shoulders accompanying the main peak. In general, the number of shoulder peaks increases with increasing volatile content of samples but their positions do not follow any trend. The DTA curves recorded in nitrogen contain ill-de-fined oxothermic effects over the 300–750°C temperature range. These curves consist of an endothermic peak around 150°C, two exothermic shoulders in the temperature region 300–400°C and a large broad exothermic whip between 500 and 700°C. The heating rates have similar effects as in oxygen while the particle size do not influence the results. It has been concluded that the organic matter in the coals studied here is extremely heterogeneous with different burning characteristics; as a result it is very difficult to quantify energy changes associated with poorly resolved exothermic events along the DTA curve. The effects also dominate in N2 atmosphere thus making identification of mineral matter difficult. The overall pattern of DTA events in oxygen can be correlated with the heating rate, particle size and volatile content of samples.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 4 0 0
Oct 2021 1 0 0
Nov 2021 0 0 0
Dec 2021 0 0 0