Authors:
T. Goldstein Mobil Research and Development Corp. Central Research Laboratory P.O.Box 1025 08543 Princeton N.J. USA

Search for other papers by T. Goldstein in
Current site
Google Scholar
PubMed
Close
and
Z. Aizenshtat The Hebrew University of Jerusalem Energy Research Center, Casali Institute For Applied Chemistry 91904 Jerusalem Israel

Search for other papers by Z. Aizenshtat in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

The high concentrations of hydrogen sulfide found in many oil and gas fields is thought to arise from the oxidation of petroleum hydrocarbons by sulfate—a reaction that reduces the value of the resource. This review, undertaken in order to better understand the geochemistry of TSR reaction in oil field sediments, covers the relevant information on thermochemical sulfate reduction (TSR) to 1991. The theoretical and experimental aspects of TSR reactions (including sulfur and carbon isotope studies) are reviewed and their significance to the geochemical system discussed. The present review agrees with previous suggestions that biochemical reduction of sulfate dominates in sedimentary environments below 120°C, and supports the possibility that reactive sulfur species will oxidize certain organic molecules at meaningful rates in geochemically reasonable reaction periods at temperatures above 175°C. We conclude that under typical petroleum reservoir reaction conditions, both elemental sulfur and polysulfides are capable of oxidizing some organic molecules under basic conditions. But that sulfate alone will not react unless lower oxidation state sulfur is present. The possible interaction of low-valence-state sulfur with sulfate to form TSR active oxidants is examined. both H2S and SO 42− are required for the formation of active polysufide reductants (e.g. thiosulfate or polythionates) in TSR systems. Such intermediates can serve to lower the overall activation energy of the oxidation of hydrocarbons by sulfate via thermal generation of sulfur radicals that can function as TSR active oxidants in many oil field sediments. We suggest that some proposed chemical mechanisms for TSR need to be experimentally verified and the results re-interpreted with respect to TSR relations in geologic systems.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2024 45 2 3
Feb 2024 71 4 1
Mar 2024 34 4 2
Apr 2024 97 12 7
May 2024 33 3 2
Jun 2024 35 7 5
Jul 2024 0 0 0