View More View Less
  • 1 University of Leipzig Department of Chemistry D-04103 Leipzig Germany
Restricted access


Desorption energy distributions were calculated for temperature-programmed desorption (TPD) of ammonia from H zeolites of different type by means of regularization. This method does not require any limiting assumptions about the distribution function. It could be shown that the desorption energy distributions obtained are nearly independent of the experimental conditions and therefore they should represent a suitable measure for the distribution of the strength of acidic sites. The calculated desorption energy distributions for the ammonia desorption from the isolated bridging SiOHAl groups of H zeolites of different type significantly differ from each other in shape. The increase of the desorption energy of the main range of the distribution functions correlates well with the increase of the average acid strength of the SiOHAl groups with decreasing Al content of the zeolites.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)