Authors:
M. PrienUniversity GH Kassel Inorganic Chemistry 03500 Kassel Germany

Search for other papers by M. Prien in
Current site
Google Scholar
PubMed
Close
and
H. SeifertUniversity GH Kassel Inorganic Chemistry 03500 Kassel Germany

Search for other papers by H. Seifert in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

Abstract  

The pseudobinary systems ACl−FeCl3 (A=Na, K, Rb, Cs) were reinvestigated by means of differential thermal analysis and X-ray powder diffraction. The existence of the compounds AFeCl4 (A=Na−Cs) and Cs3Fe2Cl9 could be confirmed; Cs3Fe2Cl9 is a stable compound which decomposes to CsCl and CsFeCl4 above 270°C. Additionally, two Rb-compounds—Rb3FeCl6 and Rb3Fe2Cl9—were found, which decompose, when heated, in the solid state. Rb3Fe2Cl9 is isotypic with the analogous Cs-compound; Rb3FeCl6 has the Cs3BiCl6 structure. Cs3FeCl6 is isotypic with Cs3CrCl6, a recently found orthorhombic variant of the elpasolite type.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2022 2 0 0
Nov 2022 0 0 0
Dec 2022 0 0 0
Jan 2023 0 0 0
Feb 2023 1 0 0
Mar 2023 1 0 0
Apr 2023 0 0 0