Authors:
A. BärwolffMax-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie Rudower Chaussee 6 D-12489 Berlin Germany

Search for other papers by A. Bärwolff in
Current site
Google Scholar
PubMed
Close
,
R. PuchertMax-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie Rudower Chaussee 6 D-12489 Berlin Germany

Search for other papers by R. Puchert in
Current site
Google Scholar
PubMed
Close
,
P. EndersMax-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie Rudower Chaussee 6 D-12489 Berlin Germany

Search for other papers by P. Enders in
Current site
Google Scholar
PubMed
Close
,
U. MenzelMax-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie Rudower Chaussee 6 D-12489 Berlin Germany

Search for other papers by U. Menzel in
Current site
Google Scholar
PubMed
Close
, and
D. AckermannMax-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie Rudower Chaussee 6 D-12489 Berlin Germany

Search for other papers by D. Ackermann in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

Abstract  

New results of steady-state two-dimensional finite-element computations of temperature distributions of high power semiconductor laser arrays are presented. The influence of different thermal loads on the 2D temperature distribution in AlGaAs/GaAs gain-guided laser arrays is investigated. TheFEM model is tested by comparing it with analytical solutions. For numerical convenience, the latter is rewritten in a novel form, which is free of overflow problems. The maximum temperatures calculated by both methods agree within 1%. Several factors determining the thermal resistance of the device are quantitatively examined: the ratio of light emitting to non-emitting areas along the active zone, the amount of Joule losses, the current spreading, the solder thickness, and voids in the solder. This yields design rules for optimum thermal performance.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2022 0 0 0
Jan 2023 0 0 0
Feb 2023 2 1 2
Mar 2023 2 0 0
Apr 2023 1 0 0
May 2023 0 1 0
Jun 2023 0 0 0