It is evidenced that due to the kinetic character of the glass transition as a ‘freeze in’ process, PVT measurements extended over the glass transition range depend not only on the thermal history but also on the pressure acting during the formation of the polymeric glasses. As a consequence metastable glasses are formed which show during heating of the glassy polymer through the glass transition range ‘volume relaxation zones’, characterized by a retarded increase or even decrease of the volume. The width of the ‘relaxation zone’ increases with increasing pressure and depends additional on the mode of operation used during the PVT measurements. In the same time a pressure induced shift of the glass temperature to higher temperatures is observed, the shift being the greater the stiffer the polymer, i.e. the higher the glass temperature of the polymer at atmospheric pressure. Due to the metastable character of polymeric glasses the evaluation of universal equations of states is thus not ingenious for polymeric glasses, because the deduced EOS will be valid only for that given glass characterized by a well defined thermal and pressure history. Additionally the EOS is influenced by the unknown time dependent aging and relaxation processes within polymeric glasses.