View More View Less
  • 1 Department of Chemical Engineering University of Missouri-Columbia 65211 Columbia MO USA
Restricted access

Thermal degradation of poly(vinyl butyral) (PVB) and its mixtures with alumina, mullite and silica was investigated by non-isothermal thermogravimetry in the temperature range of 323 to 1273 K. The analysis of the data was carried out using a three-dimensional diffusion model. Results showed that the kinetic parameters (activation energy and pre-exponential factor) of the PVB degradation are different for polymer alone, and ceramic/polymer composites. The overall weighted mean apparent activation energy showed an increasing reactivity in the order of PVB<alumina+PVB<mullite+PVB<silica+PVB. This shows that the acidic and basic surface characteristics of the ceramics promote the thermal degradation of PVB and, the more acidic silica affects the degradation more than mullite and alumina. The effect of pellet compression pressure in the range of 4000 to 8000 psig is also investigated.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)