View More View Less
  • 1 Department of Chemistry The University of Tennessee 37996-1600 Knoxville TN
  • | 2 Chemistry and Analytical Sciences Division Oak Ridge National Laboratory 37831-6197 Oak Ridge TN USA
  • | 3 Polymerphysik University at Regensburg D-93040 Regensburg Germany
Restricted access

Temperature-modulated differential scanning calorimetry (TMDSC) is based on heat flow and represents a linear system for the measurement of heat capacity. As long as the measurements are carried out close to steady state and only a negligible temperature gradient exists within the sample, quantitative data can be gathered as a function of modulation frequency. Applied to the glass transition, such measurements permit the determination the kinetic parameters of the material. Based on either the hole theory of liquids or irreversible thermodynamics, the necessary equations are derived to describe the apparent heat capacity as a function of frequency.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)