View More View Less
  • 1 Department of Chemistry and Regional Sophisticated Instrumentation Center Nagpur University 440010 Nagpur
  • | 2 Laxminarayan Institute of Technology Nagpur University 440010 Nagpur India
Restricted access

The kinetic study of thermal degradation takes into account the validity of the Arrhenius equation. From TG data, the activation energy,Ea and pre-exponential factor,A, are evaluated. These results are interpreted by using the ‘kinetic compensation effect’ as basis. A linear correlation between In(A) andEa is obtained in all cases studied. However, in a plot of the logarithm of the rate constant as a function of reciprocal temperature for the same series of reactions, the thermal oxidative degradations of Nylon-6 and PVC display a point of concurrence and one isokinetic temperature, whereas those of HIPS and PC do not. Therefore, in the thermal oxidative degradations of Nylon-6 and PVC a ‘true’ compensation effect occurs, which could be related to the bulk properties of metal oxides, such as different valence states, whereas for other polymers it displays only an ‘apparent’ compensation effect. This means that degradation is largely independent of the bulk properties of oxides, but may be related to the distribution of different kinds of active links in the polymer surface having different activation energies.

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2022 2 0 0
Feb 2022 0 0 0
Mar 2022 1 0 0
Apr 2022 0 0 0
May 2022 1 0 0
Jun 2022 2 0 0
Jul 2022 0 0 0