View More View Less
  • 1 Unilever Research Laboratory Colworth House MK44 1LQ Sharnbrook Bedford UK
Restricted access

Differential scanning calorimetry (DSC) has been used to probe ordered structures and glassing behaviour for a range of agars containing < 25% w/w water. Most commercial agars are supplied in an ordered (double-helical) state, show an endothermic helix-to-coil transition above 100‡C at low-moisture, and require 90–100‡C for solubilisation in excess water. Agars dried from the coil (single-chain) state show no corresponding endothermic transitions and only require a minimum of 45‡C for aqueous dissolution. Evidence from helix-to-coil transition enthalpies, equilibrium water content as a function of relative humidity, and solid-state13C NMR spectroscopy suggests that water molecules are associated enthalpically with double-helical agar. Single-chain agar is apparently not obtained in a glassy state by direct drying from solution, but in common with double-helical forms, exhibits rubber/glass transition behaviour following heating (in a DSC pan) to 180‡C.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 0 0 0
Mar 2021 3 0 0
Apr 2021 1 0 0
May 2021 1 0 0
Jun 2021 1 0 0
Jul 2021 2 0 0
Aug 2021 0 0 0