View More View Less
  • 1 Department of Mechanical Engineering National Chiao Tung University Hsinchu Taiwan 300, Republic of China
Restricted access

The stability behaviour of a thin-film superconductor under a localized release of thermal disturbance is investigated. Two-dimensional conjugate film/substrate conduction equation with anisotropic thermal conductivity of the film, and Joule heat are employed to investigate effects of substrate and thermal properties on the intrinsic stability and quenching recovery. To consider the thermal boundary resistance between film and substrate, an interfacial-layer model (ILM) with very low diffusivity and an acoustic mismatch model (AMM) are employed. Results show that the thermal boundary resistance influences strongly the intrinsic stability. Thermal boundary resistance increases intrinsic stability if the thermal conductivity of the substrate or the disturbance energy is large. Higher Biot numbers and thermal conductivity ratios of film to substrate in longitudinal direction influence stability favorably. We demonstrate also that operation of a film/substrate system, such as YBCO/MgO, is either intrinsically stable or irrecoverably unstable.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 1 0 0
Oct 2021 0 0 0
Nov 2021 0 0 0