Author: B. Wunderlich
View More View Less
  • 1 Department of Chemistry, The University of Tennessee, 37996-1600 Knoxville, TN USA
  • | 2 Oak Ridge National Laboratory, Chemistry and Analytical Sciences Division, 37831-6197 Oak Ridge, TN USA
Restricted access

Abstract  

Polymer molecules have contour lengths which may exceed the dimension of microphases. Especially in semicrystalline samples a single molecule may traverse several phase areas, giving rise to structures in the nanometer region. While microphases have properties that are dominated by surface effects, nanometer-size domains are dominated by interaction between opposing surfaces. Calorimetry can identify such size effects by shifts in the phase-transition temperatures and shapes, as well as changes in heat capacity. Specially restrictive phase structures exist in drawn fibers and in mesophase structures of polymers with alternating rigid and flexible segments. On several samples shifts in glass and melting temperatures will be documented. The proof of rigid amorphous sections at crystal interfaces will be given by comparison with structure analyses by X-ray diffraction and detection of motion by solid state NMR. Finally, it will be pointed out that nanophases need special attention if they are to be studied by thermal analysis since traditional ‘phase’ properties may not exist.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)