Calorimetry deals with the energetics of atoms, molecules, and phases and can be used to gather experimental details about one of the two roots of our knowledge about matter. The other root is structural science. Both are understood from the microscopic to the macroscopic scale, but the effort to learn about calorimetry has lagged behind structural science. Although equilibrium thermodynamics is well known, one has learned in the past little about metastable and unstable states. Similarly, Dalton made early progress to describe phases as aggregates of molecules. The existence of macromolecules that consist of as many atoms as are needed to establish a phase have led, however, to confusion between colloids (collections of microphases) and macromolecules which may participate in several micro- or nanophases. This fact that macromolecules can be as large or larger than phases was first established by Staudinger as late as 1920. Both fields, calorimetry and macromolecular science, found many solutions for the understanding of metastable and unstable states. The learning of modern solutions to the problems of materials characterization by calorimetry is the topic of this paper.