There are many reactions of interest in which one or more of the reactants belong to some solid phases. Modern thermoanalytical instruments can conveniently provide reaction kinetic data of high precision and accuracy, from which the underlying activation energyE may be derived in principle. Unfortunately, no ‘best' method yet exists for the derivation when the data have been collected with a programmed linear increase in sample temperature, unlike the case of isothermal measurements, which however suffer from experimental limitations [1]. Here we propose a method for extractingE from non-isothermal data, that promises general validity.
1 Tang, T. B. Chaudhri, M. M. 1980 J. Thermal Anal. 18 247–247. .
2 Tang, T. B. Chaudhri, M. M. 1980 J. Thermal Anal. 17 359–359. .
3 Šesták, J. Berggren, G. 1971 Thermochim. Acta 3 1–1 .
4 Tang, T. B. 1982 Thermochim. Acta 58 373–373. .
5 Coats, A. W. Redfern, J. P. 1964 Nature 201 68–68. .
6 Ozawa, T. 1965 Bull. Chem. Soc. Jpn. 38 1881–1881. .
7 Zsakó, J. 1975 J. Thermal Anal. 8 593–593 .
8 Balarin, M. 1977 J. Thermal Anal. 12 169–169. .
9 Norwisz, J. Hajduk, N. 1978 J. Thermal Anal. 13 223–223 .
10 Kassman, A. J. Squire, K. R. 1981 Thermochim. Acta 44 283–283. .
11 Norris, A. C. Proudfoot, A. A. 1981 Thermochim. Acta 44 313–313. .
12 Zsakó, J. 1984 Zivkovic, Z. D. (eds.) Thermal Analysis University of Beograd Bor 167–167.
13 Kassman, A. J. 1985 Thermochim. Acta 84 89–89. .
14 Kannan, M. P. Muraleedharan, K. Ganga Devi, T. 1991 Thermochim. Acta 86 265–265 .
15 Šesták, J. Satava, B. Wendlandt, W. W. 1993 Thermochim. Acta 7 477–477.
16 Ozawa, T. 1986 J. Thermal Anal. 31 547–547. .
17 Friedman, H. L. 1967 J. Macromolecular Sci. (Chem.) 41 57–57 .
18 Tang, T. B. 1980 Thermochim. Acta 41 133–133. .
19 Ozawa, T. Kanari, K. 1994 Thermochim. Acta 234 41–41. .
20 Ray, H. S. 1982 J. Thermal Anal. 24 35–35. .
21 Judd, M. D. Pope, M. I. 1972 J. Thermal Anal. 4 31–31. .
22 Wanmaker, W. L. Radielovic, D. 1965 Proc. 5th Int. Symp. Reactivity of Solids Elsevier Amsterdam 529–529.