Authors:
F. Cser

Search for other papers by F. Cser in
Current site
Google Scholar
PubMed
Close
,
F. Rasoul

Search for other papers by F. Rasoul in
Current site
Google Scholar
PubMed
Close
, and
E. Kosior

Search for other papers by E. Kosior in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

The reproducibility and reliability of the TA Instruments Modulated Differential Scanning Calorimeter (MDSC) was tested over a range of conditions. The equipment base line was found to be fairly constant with a very small fluctuation (10 μW), which means a 0.1 % fluctuation on the scale of a normal polymer MDSC curve. The excellent stability of the base line and the reasonable reproducibility of the curves (5%) suggest that frequent calibration is not required. The heat capacities calculated from the modulated response to the variable temperature depend on the frequency for a given cell constant. The heat capacity cell constant is a unique function of the modulation frequency:kc=Kcop/(p−6.3) wherep is the time of the periodicity expressed in seconds and Kco is the heat capacity cell constant measured on a standard material and reduced to zero frequency. The cell constants depend on the flow rate of the helium according to:K(He)=Ko(1.298−0.004424He+1.438·10−5He2) whereHe is the flow rate of helium in ml min−1 andKo represents a constant at 100 cm3 min−1. There is a strong dependence of cell constant on the flow rate ranges from 10 to 80 cm3 min−1, while above this rate (up to 135 ml min−1) the cell constant approaches a plateau.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2024 34 0 0
Nov 2024 11 0 0
Dec 2024 4 0 0
Jan 2025 6 0 0
Feb 2025 9 0 0
Mar 2025 5 0 0
Apr 2025 0 0 0