View More View Less
  • 1 University of London Centre for Materials Science, School of Pharmacy 29-39 Brunswick Square London WC1N 1AX 29-39 Brunswick Square London WC1N 1AX
  • | 2 Univ. di Bologna Dipartimento di Scienze Farmaceutiche Via S. Donato 19/2 40127 Bologna Italy Via S. Donato 19/2 40127 Bologna Italy
  • | 3 Birkbeck College Department of Crystallography Malet Street London WC1E 7HX Malet Street London WC1E 7HX
  • | 4 University of London Computational Pharmaceutical Sciences, Department of Pharmacy, Kings College Manresa Road London Manresa Road London
  • | 5 Abbott Laboratoires Ltd. International Development Centre Queenborough, Kent ME11 5EL UK Queenborough, Kent ME11 5EL UK
Restricted access

Abstract  

Poly(d,l-lactide) microspheres with progesterone loadings of 0, 10, 20, 30 and 50% w/w were manufactured using an interrupted solvent evaporation process. Spherical microspheres with loadings close to the theoretical values were produced. The glass transition of the polymer could be identified by a step change in the heat capacity measured by TMDSC. Progesterone was found to plasticise the glass transition temperature at contents of 20% w/w or less. At a 30% loading, cold crystallisation of progesterone was seen indicating that an amorphous form of the drug was present; these microspheres were found to exhibit a pitted surface. TMDSC of the 50% progesterone samples suggested that most of the drug was present as crystals. This was supported by the SEM and PXRD results.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 1 0 0
Aug 2021 0 0 0
Sep 2021 1 0 0
Oct 2021 2 0 0
Nov 2021 0 0 0