View More View Less
  • 1 Technical University of Wroclaw Institute of Inorganic Chemistry and Metallurgy of Rare Elements Wybrzeze Wyspiańskiego 27 50-370 Wroclaw Poland Wybrzeze Wyspiańskiego 27 50-370 Wroclaw Poland
Restricted access

Abstract  

Differential scanning calorimetry (DSC) was used to determine the molar enthalpies of dehydration and decomposition of CoC2O42H2O, Co(HCOO)22H2O and [Co(NH3)6]2(C2O4)34H2O. The first stage of dissociation of each compound is a single-step dehydration both in air and argon atmospheres. The next stages are decomposition processes influenced by experimental parameters. The enthalpies of dehydration and decomposition vary from compound to compound in each atmosphere. The obtained data have been related to the macromechanisms proposed for the thermal decomposition and the parallel-consecutive decomposition-oxidation processes.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)