Author: S. Randzio
View More View Less
Restricted access

Abstract  

A scanning transitiometer has been used in investigations of 1st and 2nd order phase transformations in polymers. It was demonstrated taking as an example fusion of polyethylene at 200 MPa with a temperature scan as inducing variable that by recording simultaneously the rate of heat exchange and the rate of volume variations it is possible to determine in a single experiment the pressure derivative of temperature of this 1st order phase transition. For phase transformations similar to the 2nd order transitions the transitiometric analysis permits simultaneous measurements of pairs of thermodynamic derivatives which permit determination of pressure effects according to the Ehrenfest equations. For the glass transition in polystyrene at high pressures the pressure effect was similar independently of the pair of thermodynamic derivatives used (heat capacity and thermal expansivity or compressibility and thermal expansibility).

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 1 2 3
Sep 2021 0 0 0
Oct 2021 0 0 0