Authors: G. Pluschke and M. Mutz
View More View Less
Restricted access


An uptake or a release of heat accompanies practically all molecular binding interactions. Therefore isothermal titration microcalorimetry is universally applicable for the characterisation of such binding processes. Calorimetric analyses do not require marker molecules or intrinsic spectroscopic reporter groups, which can modify the analysed interactions. Furthermore, measurements are carried out in solution and the adsorption of reactants to a solid phase is thus avoided. At variance with most other analytical approaches, titration calorimetry determines simultaneously enthalpy and entropy contributions of the binding interactions, as well as the binding constant and stoichiometry. In our analyses of the interactions between monoclonal antibodies and candidate antigens for vaccines vs. malaria and malignant melanoma, isothermal titration calorimetry has turned out to be a very valuable technique. The obtained quantitative data on biomolecular interactions can substantially support the rational design of epitope-focused vaccines.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 0 0 0
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0