Differential scanning microcalorimetry and equilibrium thermohemolysis procedure were used to study the effect of acclimation temperature on thermally induced transitions and thermoresistivity of fish (trout) erythrocyte membranes. Strong correlation has been found between the rates and activation energies of erythrocyte thermohemolysis and acclimation temperature. Transition temperatures of five thermodynamically irreversible and one partially reversible transitions at about 87C as well as the overall shape of microcalorimetric curves of the erythrocyte ghosts do not vary with acclimation temperature. The results suggest an essential conservation of phospholipid microenvironment of membrane skeleton proteins despite the compensatory response in lipid composition of erythrocyte membrane bilayer.