View More View Less
  • 1 University of Utah Center for Thermal Analysis, Department of Chemistry 315 S. 1400 E. Salt Lake City UT 84112 USA
Restricted access


The activation energies of the same process are often reported to have different values, which are usually explained by the differences in experimental conditions and sample characteristics. In addition to this type of uncertainty, which is associated with the process (ΔEprocess) there is an uncertainty related to the method of computation of the activation energy (ΔEmethod). For a method that uses fitting single heating rate data to various reaction models, the value of ΔEmethod) method is large enough to explain significant differences in the reported values of the activation energy. This uncertainty is significantly reduced by using multiple heating rate isoconversional methods, which may be recommended for obtaining reference values for the activation energy.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)