View More View Less
  • 1 Tallinn Technical University Ehitajate tee 5 19086 Tallinn Estonia Ehitajate tee 5 19086 Tallinn Estonia
Restricted access

Abstract  

The results obtained by studying decarbonization of different samples of Estonian limestone and dolomite and the following sulphation or carbonation of calcined products to estimate their SO2 and CO2 binding ability were presented. Experiments were carried out with thermogravimetric equipment(Q-Derivatograph, MOM and Labsys™, SETARAM) – calcination of the samples in the atmosphere of air with the heating rate 10 K per minute using multiplate crucibles, the following sulphation or carbonation of the calcined products after cooling to the fixed temperature (temperature range 400–900C) under isothermal conditions in the flow of air-SO2 or air-CO2 mixture. Chemical, X-ray, BET nitrogen dynamic desorption, etc. methods for the characterization of the initial samples, intermediate and final products were used. In addition, the possibilities of recurrent use of oil shale ashes taken from different technological points at operating thermal power plants (Estonian and Baltic TTPs, Estonia) as sorbents for SO2 binding from gaseous phase were studied, as well as the possibilities of activation of these ashes towards SO2 binding. The results of these studies confirmed the high reactivity of Estonian limestone and dolomite towards SO2 and CO2. Dependence of SO2 binding mechanism on the SO2 concentration has been established. Modelling of SO2 capture of dolomite and limestone was carried out to establish the kinetic parameters of these processes. The possibilities of activation of oil shale ashes and their effective recurrent use for binding SO2 and CO2 from gaseous phase were confirmed.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 1 0 0
Sep 2021 0 0 0
Oct 2021 0 1 2
Nov 2021 0 0 0