View More View Less
  • 1 University of Rajasthan Condensed Matter Physics Laboratory, Department of Physics Jaipur 302 004 India Jaipur 302 004 India
Restricted access


Results of phase transformations, enthalpy released and specific heat of Ge22Se78–xBix(x=0, 4 and 8) chalcogenide glasses, using differential scanning calorimetry (DSC), under non-isothermal condition have been reported and discussed. The glass transition temperature, T g, is found to increase with an average coordination number and heating rates. Following Gibbs—Dimarzio equation, the calculated values of T g (i.e. 462.7, 469.7 and 484.4 K) and the experimental values (i.e. 463.1, 467.3 and 484.5 K) increase with Bi concentration. Both values of T g, at a heating rate of 5 K min–1, are found to be in good agreement. The glass transition activation energy increases i.e. 102±2, 109±3 and 115±8 kJ mol–1 with Bi concentration. The demand for thermal stability has been ensured through the temperature difference T cT g and the enthalpy released during the crystallization process. Below T g, specific heat has been observed to be temperature independent but highly compositional dependent. The growth kinetic has been investigated using the Kissinger, Ozawa, Matusita and modified JMA equations. Results indicate that the crystallization ability is enhanced, the activation energy of crystallization increases with increasing the Bi content and the crystal growth of these glasses occur in 3 dimensions.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 0 0 0
Jun 2021 1 0 0
Jul 2021 0 0 0
Aug 2021 1 0 0
Sep 2021 1 0 0
Oct 2021 1 0 0
Nov 2021 0 0 0