View More View Less
  • 1 Budapest University of Technology and Economics Department of Plastics and Rubber Technology P.O. Box 91 H-1521 Budapest Hungary P.O. Box 91 H-1521 Budapest Hungary
  • | 2 Virginia Polytechnic Institute and State University Department of Chemistry Blacksburg VA 24061-0212 USA Blacksburg VA 24061-0212 USA
Restricted access

Abstract  

The melting behavior of the -form of isotactic polypropylene (-iPP) was investigated as a function of crystallization time and temperature. Calcium suberate, a selective -nucleating agent was used to produce samples that consist entirely of -form i-PP. The experimental melting points were recorded at different crystallization times and were extrapolated to the start of the crystallization process in order to eliminate the effect of lamellar thickening. Using the non-linear Hoffman—Weeks approach to correlate these extrapolated experimental melting temperatures with the corresponding crystallization temperatures, an equilibrium melting point of 209°C was obtained for -iPP. The equilibrium melting point estimated through the non-linear Hoffman—Weeks analysis is about 30°C higher than that (Tm0=177°C) obtained on the basis of the linear extrapolation. These results are consistent with earlier claims that a linear extrapolation of TmTc data leads to an underestimation of the equilibrium melting point. The results obtained for -iPP exemplify the importance of accounting for both the isothermal lamellar thickening effects and the non-linearity in the TmTc correlation, when the determination of an equilibrium melting point is carried out using a procedure based on the predictions of the Lauritzen—Hoffman secondary nucleation theory.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 1 1 0
Jul 2021 9 1 0
Aug 2021 3 0 0
Sep 2021 3 1 0
Oct 2021 2 0 0
Nov 2021 0 0 0
Dec 2021 0 0 0