We report the optical absorption characteristics of highly porous, polycrystalline TiO2electrodes and the influence of hydrolysis period for the preparation processes by photoacoustic (PA) spectroscopy together with photoelectrochemical (PEC) current ones. The PA spectra show peaks which are attributed to the lowest transition energy due to the quantum confinement effect. The peak intensity decreases with the increase of hydrolysis periods, indicating the possibilities of the changes in the thermal properties and the densities due to hydrolysis processes. The PEC spectra indicate that the photocurrent intensity also show peak and that of the longer hydrolysis periods is somewhat smaller than others, indicating the increase of interface states due to the formation of grain boundaries with the increase of hydrolysis processes.