View More View Less
  • 1 Osaka University Research Center for Molecular Thermodynamics, Graduate School of Science Toyonaka 560-0043 Japan Toyonaka 560-0043 Japan
Restricted access


Standard enthalpies of formation of amorphous platinum hydrous oxide PtH2.76O3.89 (Adams' catalyst) and dehydrated oxide PtO2.52 at T=298.15 K were determined to be -519.61.0 and -101.3 5.2 kJ mol-1, respectively, by micro-combustion calorimetry. Standard enthalpy of formation of anhydrous PtO2 was estimated to be -80 kJ mol-1 based on the calorimetry. A meaningful linear relationship was found between the pseudo-atomization enthalpies of platinum oxides and the coordination number of oxygen surrounding platinum. This relationship indicates that the Pt-O bond dissociation energy is 246 kJ mol-1 at T=298.15 K which is surprisingly independent of both the coordination number and the valence of platinum atom. This may provide an energetic reason why platinum hydrous oxide is non-stoichiometric.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)