Heat capacity of spinel LiCr1/6Mn11/6O4-d (d=0, 0.0184)was measured between 5 and 300 K. Both compounds showed no anomaly in the measured temperature range, especially around the room temperature where a structural phase transition is reported for the parent compound LiMn2O4. The non-stoichiometric compound LiCr1/6Mn11/6O3.9816 has greater heat capacity than that of the stoichiometric LiCr1/6Mn11/6O4. Molecular dynamics study on the vibrational property of LiMn2O4-d revealed that the lattice defects in the non-stoichiometric compound increase the low frequency phonons compared with the stoichiometric compound. It should be related to the greater heat capacity of the non-stoichiometric compound LiCr1/6Mn11/6O3.9816.