The paper presents a thermogravimetric study of some aromatic poly- and copolyethers, using mass spectrometry technique combined with thermogravimetric analysis. The polymers were synthesized by phase transfer catalysis technique, using bis(2-chloroethyl)-ether or 1,6-dichlorohexane as flexible spacers and various bisphenols (4,4'-dihydroxydiphenyl, 4,4'-dihydroxyazobenzene and bisphenol A). The presence of azobenzenic moieties in the chain induces a liquid crystalline behavior, but, due to the high values of the transition temperature, some precautions during the thermal characterisation are necessary. In the case of azobenzenic samples, the degradation reactions begin, as a function of the chemical structure, around 230-250C. A degradation mechanism based on chain transfer reactions was proposed. The chain flexibility influences the thermal degradation mechanism, in the case of rigid polymers the chain transfer reactions being less probable. For the flexible chains, the thermal stability is not essentially influenced by the copolymerisation ratio between the two aromatic bisphenols.