View More View Less
  • 1 University of Lecce Department of Innovation Engineering Via Monteroni 73100 Lecce Italy Via Monteroni 73100 Lecce Italy
Restricted access

Abstract  

Sintering of polymeric powders is a peculiar characteristic of many processing technologies, including rotational moulding and selective laser sintering (SLS). During polymer sintering, viscosity reduction in the melt state promotes densification of polymer powders, through a double stage mechanism, involving powder coalescence and bubble removal. In particular, sintering of semi-crystalline polymers is strongly influenced by the melting behaviour. Nevertheless, melting itself in absence of pressure is not necessarily accompanied by powder sintering, unless low viscosities are achieved. In this work, the melting and sintering behaviour of recycled high density polyethylene (rHDPE) have been analysed through differential scanning calorimetry (DSC) and Thermomechanical Analysis (TMA). Efficient models capable of describing the melting temperature distribution and rate of sintering of rHDPE powders have been developed, highlighting the inherent differences between the two distinct processes.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)