View More View Less
  • 1 TNO Prins Maurits Laboratory Research Group Pyrotechnics and Energetic Materials P.O. Box 45 2280 AA Rijswijk The Netherlands P.O. Box 45 2280 AA Rijswijk The Netherlands
  • | 2 TNO Prins Maurits Laboratory Research Group Rocket Technology P.O. Box 45 2280 AA Rijswijk The Netherlands P.O. Box 45 2280 AA Rijswijk The Netherlands
Restricted access

Abstract  

The mechanical properties of solid rocket propellants are very important for good functioning of rocket motors. During use and storage the mechanical properties of rocket propellants are changing, due to chemical and mechanical influences such as thermal reactions, oxidation reactions or vibrations. These influences can result in malfunctioning, leading to an unwanted explosion of the rocket motor. Most of modern rocket propellants consist of a polymer matrix (i.e. HTPB) filled with a crystalline material (i.e. AP, AN). However, the more conventional double base propellants consist of a solid gel matrix with additives, such as stabilizers. Both materials show a mechanical behaviour, quite similar to that of general polymers. To describe the material behaviour of both propellants a linear visco-elastic theory is often used to describe the mechanical behaviour for small deformations. Because the time-temperature dependency is also valid for these materials a mastercurve can be constituted. With this mastercurve the response properties (stiffness) under extreme conditions can be determined. At TNO-PML a mastercurve of a double base propellant was constituted using dynamical mechanical analysis (DMA) and compared with a mastercurve reduced from conventional (static) stress relaxation tests. The mechanical properties of this double base propellant determined by DMA were compared with conventional (quasi-static) tensile test results.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 21 0 0
Mar 2021 22 1 0
Apr 2021 35 1 1
May 2021 30 0 0
Jun 2021 24 0 0
Jul 2021 17 0 0
Aug 2021 0 0 0