Authors:
M. Rotich Rhodes University Chemistry Department Grahamstown 6140 South Africa Grahamstown 6140 South Africa

Search for other papers by M. Rotich in
Current site
Google Scholar
PubMed
Close
,
M. Brown Rhodes University Chemistry Department Grahamstown 6140 South Africa Grahamstown 6140 South Africa

Search for other papers by M. Brown in
Current site
Google Scholar
PubMed
Close
, and
B. Glass James Cook University Glass School of Pharmacy Townsville Queensland 4811 Australia Townsville Queensland 4811 Australia

Search for other papers by B. Glass in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

The effect on the stability of the isomers of aminosalicylic acid of formation of their sodium salts has been studied by use of differential scanning calorimetry and thermogravimetry, coupled with evolved gas analysis by Fourier transform infrared spectroscopy. X-ray powder diffraction and infrared spectroscopy provided complementary information. The DSC curves for the sodium salts of all of the isomers showed complex dehydration/decomposition endotherms. From the initial mass losses of the TG curves, the amounts of water per mole of salt were estimated as 0.5, 2.4 and 1.4 moles for the sodium salts of 3-aminosalicylic acid, 4-aminosalicylic acid and 5-aminosalicylic acid, respectively. TG-FTIR results for the sodium salt of 3-aminosalicylic acid showed the evolution of carbon dioxide in three stages: below 150C, between 200 and 300C and continuous formation up to 500C. This behaviour differs from that of 3-aminosalicylic acid itself, which forms CO2 between 225 and 290C. For the sodium salt of 4-aminosalicylic acid, the formation of carbon dioxide starts from 250C and is still being formed at about 650C. 4-aminosalicylic acid decarboxylates above 150C. 5-aminosalicylic acid and its sodium salt showed no evolution of carbon dioxide below 600C.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2024 8 0 0
Jan 2025 5 0 0
Feb 2025 5 0 0
Mar 2025 20 0 0
Apr 2025 3 0 0
May 2025 2 0 0
Jun 2025 4 0 0