In this paper the theoretical approach and applications of Cahn ultramicrobalance to kinetic study on the thermal decomposition of the high-temperature Y1Ba2Cu3O7-x superconductor are presented. Thermogravimetric in situ measurements of oxygen loss from Y1Ba2Cu3O6 samples heated isothermally in a relatively high dynamic vacuum were performed with a Cahn RG electrobalance. Single-phase orthorhombic samples of composition Y1Ba2Cu3O7-x (highest oxygen content) were synthesized from stoichiometric (1:2:3) mixtures of high-purity Y2O3, BaCO3 and CuO. The original 1:2:3 mixture was prepared by the two-stage procedure described earlier. The crystal structure of the sample in the original orthorhombic phase was controlled by the X-ray powder method (CuKα radiation) using a Stadi P Stoe diffractometer with a position-sensitive detector. Activation energy is estimated from appropriate Arrhenius plots.