View More View Less
  • 1 Universität Leipzig Institut für Technische Chemie D-04103 Leipzig Germany
  • | 2 Universität Leipzig Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie D-04103 Leipzig Germany
Restricted access


Temperature-programmed desorption (TPD) of water was applied to characterize short-time dealuminated HZSM-5 zeolites. Using a regularization method, distribution functions of the effective desorption energy of water were calculated. The results clearly show that during dealumination a new adsorption site is formed which can be attributed to non-framework or transient aluminium species. The highest concentration of these sites was observed for a dealumination time of 25-30 min. NO adsorption studies support this result. Furthermore, it could be concluded that the heterogeneity and the average acid strength of the remaining Si-OH-Al groups of the dealuminated samples do not change compared to the Si-OH-Al groups of the parent HZSM-5 zeolite.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)