View More View Less
  • 1 Universidad de Santiago de Compostela Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia 15782- Santiago de Compostela Spain 15782- Santiago de Compostela Spain
Restricted access

Abstract  

The miscibility of poly(N-isopropylacrylamide) (PNIPA) with poly(vinyl pyrrolidone) (PVP) and a cross-linked poly(acrylic acid) (Carbopol 971P) was evaluated from the rheological data of aqueous dispersions and the temperature of glass transitions of films made of binary mixtures. PNIPA has a low critical solubility temperature (LCST) of about 33C, below which 1% dispersion behaves as a viscous system. At temperatures above LCST, the hydrophobic interactions among the isopropyl groups initially provide transient networks of greater elasticity. The LCST of PNIPA as well as its Tg (144C, estimated by DSC and MTDSC of films) were not modified by the presence of PVP. The immiscibility of PNIPA and PVP was confirmed by the absence of interaction between both polymers as shown by FTIR analysis of the films. In contrast, PNIPA and carbopol were miscible and the behaviour of their mixtures differed significantly from that of the parent polymers; i.e. a strong synergistic effect on the viscoelasticity of the dispersions was observed below the LCST. As temperature increased, the blends showed a decrease in the loss and storage moduli, especially those with greater PNIPA proportions. The fall was smoother as the PNIPA proportion decreased. This behaviour may be explained as the result of the balance between PNIPA/carbopol hydrogen bonding interactions (as shown in the shift of C=O stretch in FTIR spectra) and PNIPA/PNIPA hydrophobic interactions. The Tg values of the films of the blends showed a positive deviation from the additivity rule; the mixtures containing more than 1:1 amide:carboxylic acid groups have a notably high Tg (up to 181C). This increase is related to the stiffness induced in the films by the PNIPA/carbopol interactions.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 5 0 0
Jul 2021 1 1 1
Aug 2021 4 0 0
Sep 2021 1 0 0
Oct 2021 1 0 0
Nov 2021 3 0 0
Dec 2021 0 0 0