Author:
R. Androsch Martin-Luther-University Halle-Wittenberg Institute of Materials Science Department of Chemistry Geusaer Str. 06217 Merseburg Germany E-mail 06217 Merseburg Germany E-mail

Search for other papers by R. Androsch in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

Reversible and irreversible crystallization and melting of high-density polyethylene at low temperature has been re-evaluated and is discussed in terms of the concept of the specific reversibility of a crystal. The concept of the specific reversibility links reversible and irreversible melting of a specific crystal such that reversible melting occurs only at slightly lower temperature than irreversible melting. In this study evidence for irreversible crystallization at low temperature in high-density polyethylene is provided, non-avoidable by primary crystallization and extended annealing at high temperature. The simultaneously observed reversible crystallization and melting at low temperature can be attributed to lateral-crystal-surface activity in addition to the well-established reversible fold-surface melting, dominant at high temperature, and evidenced by small-angle X-ray data available in the literature.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2024 8 0 0
Sep 2024 3 0 0
Oct 2024 44 0 0
Nov 2024 24 0 0
Dec 2024 5 0 0
Jan 2025 7 0 0
Feb 2025 3 0 0