Author:
A. Saboury University of Tehran Tehran Institute of Biochemistry and Biophysics Iran E-mail Iran E-mail

Search for other papers by A. Saboury in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

A simple method for determination of binding isotherm in the protein-ligand interaction was introduced using isothermal titration calorimetric data. This general method was applied to the study of the interaction of myelin basic protein (MBP) from bovine central nervous system with divalent copper ion at 27C in Tris buffer solution at pH=7.2. The binding isotherm for copper-MBP interaction is easily obtained by carrying out titration calorimetric experiment in two different concentrations of MBP. MBP has two binding sites for copper ion, which show positive cooperativity in its sites. The intrinsic association equilibrium constants are 0.083 and 1.740 ?M-1 in the first and second binding sites, respectively. Hence, occupation of the first site has produced an appreciable enhancement 21 of the binding affinity of the second site. The molar enthalpies of binding are -13.5 and -14.8 kJ mol-1 in the first and second binding sites, respectively.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2024 12 0 0
Sep 2024 12 0 0
Oct 2024 3 0 0
Nov 2024 14 0 0
Dec 2024 7 1 1
Jan 2025 25 0 0
Feb 2025 5 0 0