Fly ashes from the combustion of coal thermal power stations are commonly incorporated into portland cements and/or concretes and mortars. The chemical and morphological composition of fly ashes, together with their particle size, make them suitable as pozzolanic(non-calcic) or pozzolanic/hydraulic(highly calcic) additions to manufacture such building materials. This work focuses on the incorporation of two different fly ashes (non-calcic but of very different Fe2O3(%) contents, fineness and morphology) to two ordinary portland cements (of very different mineralogical composition as well), to determine the effects those have and the interactions they produce in the hydration reactions of portland cement. The main techniques employed for this study have been: conduction calorimetry and Frattini test; secondary techniques applied have also been: determination of setting times and analysis by X-ray diffraction and SEM. Analysis of the results obtained permitted to find different effects of fly ash addition on the hydration reactions of portland cements. Thus, dilution and stimulation effects augment with the increased fly ash percentage. Delay and acceleration of the reactions depend mainly on the type of portland cement and are accentuated with increased fly ash contents. Their behaviour as concerns heat dissipation mainly, depends on the type of fly ash used and is more pronounced with increased cement replacement. On the other hand, the pozzolanic activity of these fly ashes has been revealed at 7 and 28 days, but not at 2 days. Finally, pozzolanic cements can be manufactured using different portland cements and/or types of fly ashes, in the appropriate proportions and compatible qualities, depending on the effect(s) one wish to enhance at a specific age, which is according to previous general conclusions drew out of sulphate attack and chloride attack researches.