View More View Less
  • 1 Institute of Polymer Materials and Technology Kazakh-American University Satpaev Str., 18a Almaty 480013 Kazakhstan E-mail Kazakh-American University Satpaev Str., 18a Almaty 480013 Kazakhstan E-mail
  • | 2 UPRES EA1040, Ecole Nationale Supérieure de Chimie de Lille (ENSCL) Laboratoire des Procédés d'Elaboration de Revętements Fonctionnels (PERF) Université des Sciences et Technologies de Lille (USTL) BP 108 59652 Villeneuve d'Ascq Cedex France Université des Sciences et Technologies de Lille (USTL) BP 108 59652 Villeneuve d'Ascq Cedex France
Restricted access

Abstract  

Two well-known isoconversion methods, the first one developed by Ozawa-Flynn-Wall and the second one developed by Friedman, are confronted with calculations made using modulated thermogravimetry (MTG). The latter variant is free from a number of assumptions and restrictions made in the isoconversion computations. In particular, it allows the use of a single decomposition curve and it remains in force even in the case of multistage decomposition with conjugated processes. To obtain the model-fitting methods from the model-free methods one should replace some functions averaged over isoconversion levels by the functions calculated on the basis of kinetic models. In the Ozawa-Flynn-Wall method it is the averaged reduced time (integral of Arrhenius exponential over time). In the method of Friedman it is the averaged differential conversion function. In MTG, the perturbations caused by the sinusoidal temperature modulation are connected with derivatives of mass loss by simple scaling, where activation energy plays a role of a scaling parameter. The ratio of the experimentally measured perturbations to the experimental derivative is used for the model-free computation of activation energy. If a theoretical derivative replaces the experimental one, this procedure leads to the model-fitting method. Even a rough approximation of the experimental derivative should not lead to an excessive error in activation energy. If in a vicinity of peaks' maxima in derivatives of mass loss the decomposition is controlled by single rate-limiting processes, modulated thermogravimetry should give realistic activation energies for these processes. Inasmuch as the results of MTG are weakly sensitive to selection of kinetic models, this method should have a high predictive force.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 11 1 2
May 2021 10 0 0
Jun 2021 3 1 0
Jul 2021 4 0 0
Aug 2021 2 0 0
Sep 2021 1 0 0
Oct 2021 0 0 0