View More View Less
  • 1 Chemical Technologies for Environmental Sustainability Group, Department of Chemical Engineering, Faculty of Science and Technology, Universidad del País Vasco/EHU P.O. Box 644, 48080 Bilbao, Spain
  • | 2 Chemical Technologies for Environmental Sustainability Group, Department of Chemical Engineering, Faculty of Science and Technology, Universidad del País Vasco/EHU P.O. Box 644, 48080 Bilbao, Spain
  • | 3 Chemical Technologies for Environmental Sustainability Group, Department of Chemical Engineering, Faculty of Science and Technology, Universidad del País Vasco/EHU P.O. Box 644, 48080 Bilbao, Spain
  • | 4 Chemical Technologies for Environmental Sustainability Group, Department of Chemical Engineering, Faculty of Science and Technology, Universidad del País Vasco/EHU P.O. Box 644, 48080 Bilbao, Spain
Restricted access

Summary Non-isothermal thermogravimetric data were used to evaluate the Arrhenius parameters (activation energy and the pre-exponential factor) of the combustion of two carbonaceous materials, selected as diesel soot surrogates. The paper reports on the application of model-free isoconversional methods (Flynn-Wall-Ozawa and Kissinger methods) for evaluating the activation energy of the combustion process. On the other hand, by means of the compensation relation between E and lnA, which was established by the model-dependent Coats-Redfern method, the value of the pre-exponential factor was estimated from the known value of the model-independent activation energy.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)