View More View Less
  • 1 Department of Physics, Graduate School of Engineering, Yokohama National University 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
  • | 2 Department of Physics, Graduate School of Engineering, Yokohama National University 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
  • | 3 Department of Physics, Graduate School of Engineering, Yokohama National University 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
  • | 4 Department of Physics, Faculty of Engineering 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
  • | 5 Department of Physics, Faculty of Engineering 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
Restricted access

Summary Ni1-xZnxFe2O4 (0≤x≤1) mixed ferrite nanoparticles encapsulated with amorphous-SiO2 were prepared by a wet chemical method. Particle sizes were controlled to range from 2.6 to 33.7 nm by heat treatment, and the particle size dependence of saturation magnetization Ms was investigated for the x=0.5 region. The Ms value decreased abruptly for particle sizes below about 6 nm. From the temperature dependence of the magnetization under field-cooled and zero-field-cooled conditions, blocking temperatures Tb were observed to be between 28 and 245 K depending on the particle size. At the blocking temperature, the superparamagnetic spins in the particle are supposed to be blocked against the thermal fluctuation energy. A smaller particle volume causes a lower blocking temperature; so an extremely small particle would be strongly affected by thermal fluctuation.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)