View More View Less
  • 1 Universidade de Santiago de Compostela Research Group TERBIPROMAT, Departamento de Física Aplicada Santiago de Compostela Spain Campus Sur 15782 Santiago de Compostela Spain Campus Sur 15782
Restricted access

Abstract  

The study of the degradation of a polymer is important because it can determine the upper temperature limit, the mechanism of a solid-state process, and the life-time for this system. Since the behavior of thermosets is affected by the selection of the curing cycle, it is important to investigate the changes which take place during the thermal degradation of these materials when a change on the sequence of time and temperature is introduced during the curing reaction. In this work, the thermal degradation of two epoxy systems diglycidyl ether of bisphenol A (BADGE n=0)/1, 2 diamine cyclohexane (DCH) cured through different sequences of time and temperature was studied by thermogravimetric analysis in order to determine the reaction mechanism of the degradation processes, and also to check the influence of the curing cycle on this mechanism. Values obtained using different kinetic methods were compared to the value obtained by Kissinger’s method (differential method which do not require a knowledge of the n-order reaction mechanism), and to that obtained through Flynn–Wall–Ozawa method in a previous work.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 1 0 0
Oct 2021 0 0 0
Nov 2021 0 0 0