Thermogravimetric analyses of thermal decomposition (pyrolysis, thermal dissociation and combustion) of 9 different samples were carried out in dynamic conditions at different heating rates. The kinetic parameters (E, A and km) of thermal decomposition were determined and interrelations between the parameters and heating rate q were analyzed. There were also relations between Arrhenius and Eyring equations analyzed for thermal decomposition of solid phase. It was concluded that Eyring theory is an element, which interconnects used thermokinetic equations containing Arrhenius law and suggests considering kinetic quantities in way relative to 3 kinetic constants (E, A and km). Analysis of quantities other than km (i.e. E, A, Δ+H, Δ+S) in relation to heating rate is an incomplete method and does not lead to unambiguous conclusions. It was ascertained that in ideal case, assuming constant values of kinetic parameters (E and A) towards heating rate and satisfying both Kissinger equations, reaction rate constant km should take on values intermediate between constants (km)1 and (km)2 determined from these equations. Whereas behavior of parameters E and A towards q were not subjected to any rule, then plotting relation kmvs.q in the background of (km)1 and (km)2 made possible classification of differences between thermal decomposition processes taking place in oxidizing and oxygen-free atmosphere.