View More View Less
  • 1 Hungarian Academy of Sciences Institute of Isotope Budapest Hungary 1525 77
  • | 2 Eötvös Lóránd University Department of Nuclear Chemistry, Research Group of Nuclear Methods in Structural Chemistry HAS Budapest Hungary 1518 32
Restricted access

Abstract  

The prepared amorphous γ-ZrP\SiO2 composite had a complicated composition, since a part of γ-ZrP is converted to α-form during the exfoliation of it. The γ-ZrP\SiO2 composite have specific surface area of 421 m2g–1. The acidic P–OH groups of the lamellae species placed on the surface (it is ≈1.0 meq g–1), do not destroy until the temperature of 1030 K. During the thermal treatment the total mass loss of 7.79% was found. This value corresponds to 0.42 mole of H2O per molecule unit. The water loss process was found very slow, because of the placing of bilamellar species in the composite.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)