View More View Less
  • 1 Beijing Institute of Technology School of Chemical Engineering and Environment Beijing China 100081 Beijing China 100081
  • | 2 Tokyo Metropolitan University Graduate School of Engineering Hachiouji, Tokyo Japan 192-0397 Hachiouji, Tokyo Japan 192-0397
Restricted access


The crystallization dynamics of Nylon 66/Nylon 6 blends, the crystalline/crystalline polymer blends, was analyzed by DSC under isothermal conditions. The crystal growth rate (G) and the nucleation rate (N) depended on both the degree of supercooling (ΔT) and the blend mass fraction (ϕ). The ΔT /Tm0 values obtained at the fixed G, which corresponded to the chemical potential difference of molecules between liquid and crystal states, and the surface free energy parameters evaluated from G and N depended on ϕ for blends. The results suggested that Nylon 66/Nylon 6 blends with ϕN66≥0.80 or ϕN66≤0.15 are miscible.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)