Authors:
J. Wang School of Civil Engineering, Tsinghua University Beijing P.R. China 100084

Search for other papers by J. Wang in
Current site
Google Scholar
PubMed
Close
and
P. Yan School of Civil Engineering, Tsinghua University Beijing P.R. China 100084

Search for other papers by P. Yan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

The calorimetric data of binders containing pure Portland cement, 20% fly ash, 20% slag and 10% silica fume respectively are determined at different initial casting temperatures using an adiabatic calorimeter to measure the adiabatic temperature rising of concrete. The calorimetric data of binders with different dosages of fly ash at two water binder ratios (w/b) are determined, too. Elevation of initial casting temperature decreases the heat evolution of binder, enhances the heat evolution rate of binder and increases the heat evolution rate of binder at early age. The dosage of fly ash in concrete has different effects on the heat evolution of binder with different w/b. At high w/b ratio the heat evolution of binder decreases when dosage of fly ash increases. At low w/b ratio the heat evolution of binders increases when dosage of fly ash increases from 0 to 40% of total binder quantity. The heat evolution of binder decreases after the dosage of fly ash over 40%. An appropriate dosage of fly ash in binder benefits the performance of concrete at low w/b ratio.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Sep 2023 5 0 0
Oct 2023 1 1 0
Nov 2023 1 0 0
Dec 2023 18 2 0
Jan 2024 8 0 0
Feb 2024 4 0 0
Mar 2024 0 0 0