The fracture toughness of blends of polypropylene terephthalate (PPT) with polyethylene terephthalate (PET) and polybutylene terephthalate (PBT) were investigated. Binary blends were prepared comprising 10:90, 30:70, 50:50, 70:30 and 90:10 mass/mass%. The fracture toughness was determined for each blend using the essential work of fracture (EWF) method and thin film double edge notched tension (DENT) specimens. The specific essential work of fracture, we, values obtained for blends of PET/PPT ranged from 27.33 to 37.38 kJ m–2 whilst PBT/PPT blends yielded values ranging from 41.78 to 64.23 kJ m–2. Differential scanning calorimetry (DSC) was employed to assess whether or not crystallinity levels influence the mechanical properties evaluated. The fracture toughness of PPT deteriorated with PET incorporation. However, high we values exceeding that of pure PPT were obtained for PBT/PPT blends across the composition range studied.