View More View Less
  • 1 Department of Inorganic Chemistry, University of Bucharest, Faculty of Chemistry, Bucharest, Romania 050663 Sector 5 90–92 Panduri Str.
Restricted access


The complexes of the type SnCl4(HL)·EtOH and SnCl2L2 (HL 1 : the Schiff base resulted in 1:1 condensation of isatin and aniline; HL 2 : the Schiff base resulted in 1:1 condensation of isatin and p-toluidine) have been synthesized and characterized. The thermal analysis of the new ligands and complexes has evidenced the thermal intervals of stability and also the thermal effects that accompany them. The Schiff bases thermal transformations consist in phase transitions, Carom–N bond cleavage and thermolysis processes. The different nature of the complexes generates their different thermal behaviour. The complexes lead in three steps to SnO2 and in all cases the Schiff bases degradation generates a pyrrolidone-coordinated derivative. As for the SnCl4(HL)·EtOH complexes, the SnCl4 formed during the last step is involved in two competitive processes, one consists in their volatilisation while the other one leads to SnO2. As result the SnO2 residue is smaller than the theoretically expected.